Mass Terms in Twistor String Theory

Ori Ganor (UC Berkeley)

Talk at U. Chicago, October 2005.

BASED ON:

- "Massless and massive three dimensional super Yang-Mills theory and mini-twistor string theory," [arXiv:hep-th/0502076]
 by D. W. Chiou, OG, Y. P. Hong, B. S. Kim and I. Mitra.
- "A Deformation of Twistor Space and a Chiral Mass Term," [arXiv:hep-th/0510???]
 by D. W. Chiou, OG and B. S. Kim.

Introduction

- 1. Brief review of twistor and minitwistor spaces.
- 2. Witten's observations on N=4 supersymmetric Yang-Mills theory.
- 3. Mass terms to the scalars and fermions.
- 4. Dimensional reduction to D = 3.
- 5. Physical interpretation in D=3 of Witten's holomorphic curves.
- 6. More mass terms in D=3.

Twistor space [review]

I will begin with a review of twistor space, mostly following [Paul Baird].

The twistor transform uncovers holomorphic structure underlying free field equations.

Simplest example:

A harmonic function on \mathbb{R}^2 :

$$0 = \Delta \phi := \frac{\partial^2 \phi}{\partial x_1^2} + \frac{\partial^2 \phi}{\partial x_2^2}$$

$$\implies \phi(x_1, x_2) = f(x_1 + ix_2) + g(x_1 - ix_2).$$

Set

$$z := x_1 + ix_2, \qquad \overline{z} := x_1 - ix_2.$$

Twistor space for \mathbb{R}^2 is $\mathbb{C} \cup \mathbb{C}$, the complex z-plane together with the complex \overline{z} -plane.

Harmonic functions on \mathbb{R}^3 [review]

There is a map from harmonic functions on \mathbb{R}^3 to holomorphic functions on minitwistor space $T\mathbb{CP}^1$. [Hitchin 1982]

Again, I will follow [Baird]. We are looking for solutions to

$$0 = \Delta \frac{\phi}{\partial x_1^2} + \frac{\partial^2 \phi}{\partial x_2^2} + \frac{\partial^2 \phi}{\partial x_3^2}.$$

For fixed θ , and any holomorphic function f on \mathbb{C} ,

$$0 = \triangle f(x_1 + ix_2 \sin \theta + ix_3 \cos \theta).$$

We can construct more complicated harmonic functions by [Whittaker]

$$\phi(x_1, x_2, x_3) = \int_0^{2\pi} F(x_1 + ix_2 \sin \theta + ix_3 \cos \theta, \theta) d\theta$$

Spherical coordinates [review]

Let's change to a basis of spherical harmonics. Define spherical coordinates

 $x_1 = r \cos u$, $x_2 = r \sin u \sin v$, $x_3 = r \sin u \cos v$.

Then, for $l \geq 0$, and $|m| \leq l$, the spherical harmonics can be written as

$$r^{l}Y_{lm}(u,v) = \frac{\sqrt{(2l+1)(l-m)!(l+m)!}}{4\pi^{3/2}i^{3m}l!} \times \int_{0}^{2\pi} d\theta \underbrace{e^{im\theta}(x_{1}+ix_{2}\sin\theta+ix_{3}\cos\theta)^{l}}_{F},$$

Minitwistor space [review]

Whittaker's formula had the following integrand:

$$F(x_1 + ix_2\sin\theta + ix_3\cos\theta, \theta)$$

It is more convenient to change variables

$$w = 2e^{i\theta}(x_1 + ix_2\sin\theta + ix_3\cos\theta), \qquad z = e^{i\theta}.$$

Given the analytic function F, it is convenient to define a related analytic function φ by

$$\varphi(e^{i\theta}, w) := e^{-i\theta} F(\frac{1}{2}e^{-i\theta}w, \theta).$$

We assume that we can extend φ to an analytic function $\varphi(z,w)$ defined in a neighborhood of the circle |z|=1. Whittaker's formula can now be rewritten as

$$\frac{\phi(\vec{x}) = \frac{1}{2\pi i} \oint_c \varphi(z, -[x_2 - ix_3] + 2zx_1 + z^2[x_2 + ix_3]) dz.}$$

Mintwistor space and $T\mathbb{CP}^1$ [review]

$$\phi(\vec{x}) = \frac{1}{2\pi i} \oint_c \varphi(z, \underbrace{-[x_2 - ix_3] + 2zx_1 + z^2[x_2 + ix_3]}_{w}) dz.$$

The contour integral for ϕ does not change if we modify

$$\varphi(z,w) \longrightarrow \varphi(z,w) + [holomorphic at z = 0] + [holomorphic at z = \infty]$$

provided we define the good holomorphic coordinates at $z=\infty$ as

$$z' = \frac{1}{z}, \qquad w' = \frac{w}{z^2}.$$

Then, a holomorphic function

$$\varphi(z,w) := z'^2 \varphi'(z',w')$$

will give

$$\phi(\vec{x}) = \frac{1}{2\pi i} \oint_c \varphi'(\frac{1}{z}, -\frac{1}{z^2}[x_2 - ix_3] + \frac{2}{z}x_1 + [x_2 + ix_3]) \frac{dz}{z^2} = 0.$$

Picture of Minitwistor space

Minitwistor space is the tangent space of \mathbb{CP}^1 .

Two patches:

$z' \neq 0$	$z \neq 0$
z	z'=1/z
w	$w' = w/z^2$

Minitwistor transform

So, the minitwistor transform $\varphi(z,w)$ transforms like a meromorphic section of the line-bundle $\mathcal{O}(-2)$ over $T\mathbb{CP}^1$.

It is defined up to local holomorphic sections at z = 0 and $z = \infty$.

 \Longrightarrow It is an element of the sheaf cohomology $H^1(T\mathbb{CP}^1, \mathcal{O}(-2)).$

Geometrical interpretation [review]

Minitwistor space has a simple geometrical interpretation {that I learned from P. Baird's review}:

 $T\mathbb{CP}^1$ is the space of oriented lines in \mathbb{R}^3 .

$$\begin{array}{c}
\mathbb{R}^{3} \\
\downarrow & \stackrel{\vec{n}}{\sqrt{A}} \\
z = \frac{n^{2} - in^{3}}{1 + n^{1}} \in \mathbb{CP}^{1} \simeq \mathbb{C} \cup \{\infty\} \\
w = \frac{-(1 + n^{1})(A^{2} - iA^{3}) + (n^{2} - in^{3})A^{1}}{(1 + n^{1})^{2}}
\end{array}$$

(By stereographic projection.)

Twistor space [review]

All this also works for \mathbb{R}^4 . We are looking for harmonic functions

$$0 = \triangle \phi := \sum_{k=1}^{4} \frac{\partial^2 \phi}{\partial x_k^2}$$

Any holomorphic function of two complex variables of the form

$$f(x_1 + ix_2, x_3 + ix_4)$$

is harmonic. This is also true for any other choice of complex structure. A generic choice of complex structure is described by $[\lambda^1, \lambda^2] \in \mathbb{CP}^1$. For this complex structure we require that

$$\lambda^{1} \begin{pmatrix} x_1 + ix_2 \\ x_3 + ix_4 \end{pmatrix} + \lambda^{2} \begin{pmatrix} -x_3 + ix_4 \\ x_1 - ix_2 \end{pmatrix}$$

be analytic. Then

$$f_{[\lambda^{1},\lambda^{2}]}(x_{1},x_{2},x_{3},x_{4}) := f(\lambda^{1}[x_{1}+ix_{2}] + \lambda^{2}[-x_{3}+ix_{4}],$$
$$\lambda^{1}[x_{3}+ix_{4}] + \lambda^{2}[x_{1}-ix_{2}]).$$

is harmonic.

Spinor notation

We can get any harmonic function on \mathbb{R}^4 by integrating over different complex structures

$$\phi(x) = \oint_{\mathcal{C}} f_{[1,z]}(x;z) dz.$$

We set

$$(x_{\alpha\dot{\alpha}}) \equiv \begin{pmatrix} x_{1\dot{1}} & x_{1\dot{2}} \\ x_{2\dot{1}} & x_{2\dot{2}} \end{pmatrix} := \begin{pmatrix} x_1 + ix_2 & -x_3 + ix_4 \\ x_3 + ix_4 & x_1 - ix_2 \end{pmatrix}.$$

$$\alpha = 1, 2, \quad \dot{\alpha} = \dot{1}, \dot{2}, \quad x_{\alpha\dot{\alpha}} = x^{\mu}\sigma_{\mu\alpha\dot{\alpha}}.$$

Then,

$$\phi(x) = \oint_c \frac{dz}{dz} f(\mu_{\dot{\alpha}}, \lambda) \Big|_{\mu_{\dot{\alpha}} = -x_{\alpha \dot{\alpha}} \lambda^{\alpha}}$$

$$\lambda^1 \equiv 1, \lambda^2 \equiv z.$$

Twistors and shockwaves

For $\mathbb{R}^{2,2}$ the twistors are real.

$$(x_{\alpha\dot{\alpha}}) \equiv \begin{pmatrix} x_{1\dot{1}} & x_{1\dot{2}} \\ x_{2\dot{1}} & x_{2\dot{2}} \end{pmatrix} := \begin{pmatrix} x_1 + x_2 & -x_3 + x_4 \\ x_3 + x_4 & x_1 - x_2 \end{pmatrix},$$

and the shockwave

$$\Phi_{(\mu,\lambda)}(x^1,\ldots,x^4) \propto \delta^2(x_{\alpha\dot{\alpha}}\lambda^{\alpha} + \mu_{\dot{\alpha}})$$

solves the wave equation

$$0 = \frac{\partial^2 \Phi}{\partial x_1^2} + \frac{\partial^2 \Phi}{\partial x_3^2} - \frac{\partial^2 \Phi}{\partial x_2^2} - \frac{\partial^2 \Phi}{\partial x_4^2}.$$

 $\tilde{t} = (\mu, \lambda)$ denotes a D = 4 twistor.

So, instead of working in the usual basis of planewaves

$$\Phi_k(x) = e^{ik \cdot x}$$

in twistor theory we work in a basis of shockwaves.

Twistor space, for this example, is $\mathbb{RP}^3 \setminus \mathbb{RP}^1$ with projective coordinates

$$Z^{1} = \lambda^{1}, Z^{2} = \lambda^{2}, Z^{3} = \mu^{1}, Z^{4} = \mu^{2},$$

$$(Z^{1}, Z^{2}, Z^{3}, Z^{4}) \sim (\zeta Z^{1}, \zeta Z^{2}, \zeta Z^{3}, \zeta Z^{4}),$$

$$(Z^{1}, Z^{2}) \neq (0, 0).$$

Background

- Witten discovered remarkable properties of perturbative scattering amplitudes in N=4 SYM in D=4.
- Switching from a basis of plane-waves to a basis of shock-waves (twistors), Witten found that amplitudes vanish unless certain algebraic conditions (on the incoming and outgoing twistors) hold.
- Witten proposed that a topological B-model with target space $\mathbb{CP}^{3|4}$ (super twistor space) reproduces the SYM amplitudes. Certain non-perturbative effects (D1-instantons) are a crucial ingredient.

N = 4 Super-Yang-Mills theory

The Lagrangian of N=4 super Yang-Mills theory:

$$g^{2}\mathcal{L} = \operatorname{tr}\left\{\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}\sum_{I}D_{\mu}\Phi^{I}D^{\mu}\Phi^{I}\right.$$
$$-\frac{1}{4}\sum_{I,J}[\Phi^{I},\Phi^{J}]^{2} + \sum_{A}\psi_{\alpha}^{A}\sigma^{\mu}{}^{\alpha\dot{\beta}}\partial_{\mu}\psi_{A\dot{\beta}}$$
$$+\sum_{A,B,I}\left(\Gamma_{AB}^{I}\Phi^{I}\psi_{\alpha}^{A}\psi^{B\alpha} + \Gamma^{IAB}\Phi^{I}\psi_{A\dot{\alpha}}\psi_{B}^{\dot{\alpha}}\right)\right\},$$

symbol	spacetime	$SU(4)_R$
Φ^I	scalars	6
ψ^A_lpha	ψ^A_lpha (L-)spinors	
$\psi_{A\dotlpha}$	(R-)spinors	$\overline{f 4}$

Mass terms

The Lagrangian of mass-deformed N=4 super Yang-Mills theory:

$$g^{2}\mathcal{L} = \operatorname{tr}\left\{\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}\sum_{I}D_{\mu}\Phi^{I}D^{\mu}\Phi^{I}\right.$$

$$-\frac{1}{4}\sum_{I,J}[\Phi^{I},\Phi^{J}]^{2} + \sum_{A}\psi_{\alpha}^{A}\sigma^{\mu\,\alpha\dot{\beta}}\partial_{\mu}\psi_{A\dot{\beta}}$$

$$+\sum_{A,B,I}\left(\Gamma_{AB}^{I}\Phi^{I}\psi_{\alpha}^{A}\psi^{B\alpha} + \Gamma^{I\,AB}\Phi^{I}\psi_{A\dot{\alpha}}\psi_{B}^{\dot{\alpha}}\right)$$

$$+\sum_{A,B}M_{AB}\psi_{\alpha}^{A}\psi^{B\alpha} + \sum_{A,B}M^{AB}\psi_{A\dot{\alpha}}\psi_{B}^{\dot{\alpha}}$$

$$+(m^{2})_{IJ}\Phi^{I}\Phi^{J}\right\},$$

symbol	spacetime	$SU(4)_R$
Φ^I	scalars	6
ψ^A_{lpha}	(L-)spinors	4
$\psi_{A\dotlpha}$	(R-)spinors	$\overline{4}$
M^{AB}	-	10
M_{AB}	-	$\overline{10}$

Notation

• Shock-waves on $\mathbb{R}^{2,2}$ (or \mathbb{C}^4):

$$\Phi_{(\mu,\lambda)}(x^1,\ldots,x^4) \propto \delta^2(x_{\alpha\dot{\alpha}}\lambda^{\alpha} + \mu_{\dot{\alpha}})$$

$$\alpha = 1, 2, \quad \dot{\alpha} = \dot{1}, \dot{2}, \quad x_{\alpha\dot{\alpha}} = x^{\mu}\sigma_{\mu\alpha\dot{\alpha}}.$$

- $\tilde{t} = (\mu, \lambda)$ denotes a D = 4 twistor.
- \bullet Twistor space is $\mathbb{CP}^3\setminus\mathbb{CP}^1$ with projective coordinates

$$Z^{1} = \lambda^{1}, Z^{2} = \lambda^{2}, Z^{3} = \mu^{1}, Z^{4} = \mu^{2},$$

$$(Z^{1}, Z^{2}, Z^{3}, Z^{4}) \sim (\zeta Z^{1}, \zeta Z^{2}, \zeta Z^{3}, \zeta Z^{4}),$$

$$(Z^{1}, Z^{2}) \neq (0, 0).$$

Picture of twistor space

Twistor space is a fibration of \mathbb{C}^2 over \mathbb{CP}^1 .

Two patches:

$$\lambda^{1} \neq 0 \qquad \lambda^{2} \neq 0$$

$$Z = \lambda^{2}/\lambda^{1} \qquad Z' = \lambda^{1}/\lambda^{2} = \frac{1}{Z}$$

$$X = \mu^{1}/\lambda^{1} \qquad X' = \mu^{1}/\lambda^{2} = \frac{X}{Z}$$

$$Y = \mu^{2}/\lambda^{1} \qquad Y' = \mu^{2}/\lambda^{2} = \frac{Y}{Z}$$

Supertwistor space

For N=4 SYM, Witten added four anticommuting coordinates Ψ^1, \ldots, Ψ^4 .

$$\mathbb{CP}^{3|4}\setminus\mathbb{CP}^{1|4}$$

Supermanifold

[Sethi, Schwarz, Movshev & Schwarz, Popov & Sämann & Wolf, ...]

Super-twistor space is a fibration of $\mathbb{C}^{2|4}$ over \mathbb{CP}^1 .

Two patches:

$$\lambda^{1} \neq 0 \qquad \lambda^{2} \neq 0$$

$$Z = \lambda^{2}/\lambda^{1} \qquad Z' = \lambda^{1}/\lambda^{2} = 1/Z$$

$$X = \mu^{1}/\lambda^{1} \qquad X' = \mu^{1}/\lambda^{2} = X/Z$$

$$Y = \mu^{2}/\lambda^{1} \qquad Y' = \mu^{2}/\lambda^{2} = Y/Z$$

$$\Theta^{A} = \Psi^{A}/\lambda^{1} \qquad \Theta'^{A} = \Psi^{A}/\lambda^{2} = \Theta^{A}/Z$$

Superfields

The superfield \mathcal{A} combines the twistor transforms of gluons, fermions and scalars [Witten]:

$$\begin{split} \mathcal{A}(X,Y,Z,\Theta) &= \\ A + \widehat{\varrho}_A \Theta^A + \frac{1}{2} \Phi_{AB} \Theta^A \Theta^B \\ + \frac{1}{6} \epsilon_{ABCD} \widehat{\varrho}^A \Theta^B \Theta^C \Theta^D + \frac{1}{24} G \epsilon_{ABCD} \Theta^A \Theta^B \Theta^C \Theta^D \end{split}$$

Superfield components

A(X,Y,Z)	$(+1)$ helicity gluons $(F = \widetilde{F})$
$\widehat{\widetilde{arrho}}_A(X,Y,Z)$	$(+1/2)$ helicity fermions $(\psi_{\dot{lpha}A})$
$\phi_{AB}(X,Y,Z)$	(0 helicity) scalars
$\widehat{arrho}^A(X,Y,Z)$	$(-1/2)$ helicity fermions (ψ_lpha^A)
G(X,Y,Z)	(-1) helicity gluons $(F=-\widetilde{F})$

The contour integrals should be invariant under

$$\mathcal{A} \to \mathcal{A} + \text{(holomorphic at } Z \neq 0\text{)}$$

+ (holomorphic at $Z \neq \infty$)

[In other words, \mathcal{A} is an element of sheaf cohomology $H^1(\cdots)$.]

Chiral Fermion Mass Term

Claim #1:

At $O(g^0)$, adding a chiral mass term:

$$\delta \mathcal{L} = \sum_{A,B} M^{AB} \psi_{A\dot{\alpha}} \psi_B^{\dot{\alpha}}$$

is equivalent to a certain super-complex structure deformation of supertwistor space $\mathbb{CP}^{3|4}\setminus\mathbb{CP}^{1|4}$.

<u>Note</u>: The chiral mass term breaks CPT, but all we are doing here is summing Feynman diagrams. We don't care about unitarity . . .

The Θ^3 Supercomplex Structure Deformation

$\lambda^1 \neq 0$	coordinates for $\lambda^2 \neq 0$
Z	$Z' = \frac{1}{Z}$
X	$X' = \frac{X}{Z}$
Y	$Z' = \frac{1}{Z}$ $X' = \frac{X}{Z}$ $Y' = \frac{Y}{Z}$
Θ^A	$\Theta'^{A} = \frac{1}{Z}\Theta^{A} + \frac{1}{6Z^{2}}M^{AB}\epsilon_{BCDE}\Theta^{C}\Theta^{D}\Theta^{E}$

Wave-functions with the mass term

In momentum space, the free Dirac equation with a chiral mass term is

$$p_{\alpha\dot{\alpha}}\psi^{\alpha A} = M^{AB}\psi_{\dot{\alpha}B}, \qquad p_{\alpha\dot{\alpha}}\psi_A^{\dot{\alpha}} = 0.$$

Like the massless case $(M^{AB} = 0)$,

$$p^2 = 0 \implies p_{\alpha\dot{\alpha}} = \lambda_\alpha \tilde{\lambda}_{\dot{\alpha}}.$$

For the massless case, the general solution is:

$$\psi_{\dot{\alpha}A} = \tilde{\lambda}_{\dot{\alpha}} \tilde{\varrho}_A(\lambda, \tilde{\lambda}), \qquad \psi_{\alpha}^A = \lambda_{\alpha} \varrho^A(\lambda, \tilde{\lambda}).$$

For the massive case, the general solution is:

$$\psi_{\dot{\alpha}A} = \tilde{\lambda}_{\dot{\alpha}} \tilde{\varrho}_A, \qquad \psi_{\alpha}^A = \lambda_{\alpha} \varrho^A + M^{AB} \eta_{\alpha} \tilde{\varrho}_B,$$

where η_{lpha} is some spinor that satisfies

$$\eta_{\alpha}\lambda^{\alpha}=1.$$

(Note that η_{α} is not globally defined!)

Claim #1 can be justified by analyzing the behavior of the twistor-transform of this solution at $Z=\infty$. [Chiou & OG & Hong & Kim & Mitra]

Holomorphic Curves of Degree d=1

In the undeformed twistor space a holomorphic curve of degree d=1 in $\mathbb{CP}^{3|4}$ is given by a set of linear equations [Witten]

$$X = -x_{1\dot{1}} - x_{2\dot{1}}Z, \qquad Y = -x_{1\dot{2}} - x_{2\dot{2}}Z,$$

$$\Theta^A = -\theta_1^A - \theta_2^A Z,$$

where $x_{\alpha\dot{\alpha}}$ and θ_{α}^{A} are moduli.

With the chiral mass term, the last equation has to be replaced with the quadratic expression

$$\Theta^{A} = -\theta_{1}^{A} - \theta_{2}^{A}Z + M^{AB} \epsilon_{BCDE} \theta_{2}^{C} \theta_{2}^{D} \theta_{2}^{E} Z^{2}$$

(In order to have "good" behavior near $Z = \infty$.)

This can be compared with amplitudes . . .

3-Scalar correction

Claim #1':

The above super-complex structure deformation of supertwistor space $\mathbb{CP}^{3|4} \setminus \mathbb{CP}^{1|4}$ is equivalent to adding a chiral mass term and a 3-scalar interaction:

$$\delta \mathcal{L} = \operatorname{tr} \{ \sum_{A,B} \mathbf{M}^{AB} \psi_{A\dot{\alpha}} \psi_{B}^{\dot{\alpha}} + g \mathbf{M}^{IJK} \phi_{I} \phi_{J} \phi_{K} \}.$$

$$\mathbf{M}^{IJK} \equiv \epsilon^{CDEF} \Gamma_{AC}^{[I} \Gamma_{BD}^{J} \Gamma_{EF}^{K]} \mathbf{M}^{AB}$$

 $\overline{E}^{AB} = \text{CSUGRA field [Berkovits & Witten]}$

$$M^{AB} = \left\langle \overline{E}^{AB} \right\rangle$$

— ·	•		
INMA	nciana	\square	LLICTION
	nsiona	1 1 <i>1</i> 50	luction

Can we learn more about mass terms by dimensionally reducing to D=3?

Dimensional Reduction to D=3

We dimensionally reduce to D=3 by gauging the translation generator P_4 .

Gauging would make $P_4 = 0$ identically. In an appropriate basis, P_4 acts as

$$\delta \lambda^{\alpha} = 0, \qquad \delta \mu^{\dot{\alpha}} = \epsilon \lambda^{\alpha}.$$

(Note that in D=3 there is no distinction between α and $\dot{\alpha}$.)

After gauging P_4 we are left with minitwistor space $T\mathbb{CP}^1$. [Hitchin]

Minitwistor space

Minitwistor space is $T\mathbb{CP}^1$ [Hitchin]. It can be parameterized by the P_4 -invariant

$$z = \frac{\lambda^1}{\lambda^2}, \qquad w = \frac{\mu^{\dot{1}}\lambda^2 - \mu^{\dot{2}}\lambda^1}{(\lambda^2)^2}$$

For signature $\mathbb{R}^{1,2}$ the minitwistor space is $T\mathbb{RP}^1$ and z,w are real.

The corresponding shock-waves are

$$\phi(x^0, x^1, x^2) = \delta(\mathbf{w} + [x^2 - x^0] - 2x^1\mathbf{z} - [x^2 + x^0]\mathbf{z^2})$$

Super-minitwistor space can be covered by two patches with transition relations:

$$z' = \frac{1}{z}, \qquad w' = \frac{1}{z}w, \qquad {\theta'}^A = \frac{1}{z}\theta^A.$$

Helicity in D = 3

The Lagrangian of this D = 3 SYM is

$$g_3^2 \mathcal{L} = \operatorname{tr} \left(\frac{1}{4} F_{ij} F^{ij} + \frac{1}{2} \sum_{i=1}^7 D_i \Phi^I D^i \Phi^I - \frac{1}{4} \sum_{I,J} [\Phi^I, \Phi^J]^2 \right)$$
$$+ \sum_{a=1}^8 \chi_\alpha^a \sigma^{i \alpha \beta} \partial_i \chi_\beta^a + \sum_{a,b,I} \epsilon^{\alpha \beta} \Gamma^I_{ab} \Phi^I \chi_\alpha^a \chi_\beta^b \right).$$

Onshell, instead of the gauge field we get two scalars:

$$A_4 = \Phi^7, \qquad F_{ij} = \epsilon_{ijl} \partial_l \Phi^8$$

Helicity \pm refers to onshell states with

$$\Phi^7 = \pm i\Phi^8$$
.

Holomorphic curves

At tree-level, Witten's discoveries about D=4 SYM amplitudes and holomorphic curves in twistor space immediately imply similar results for D=3.

For example, MHV amplitudes correspond to quadratic sections of $T\mathbb{CP}^1$:

$$\mathbf{w} = -[x^2 - x^0] + 2x^1 \mathbf{z} + [x^2 + x^0] \mathbf{z}^2$$
.

For D = 3, there is a correspondence [Hitchin]:

For signature $\mathbb{R}^{1,2}$, this correspondence translates to an amusing physical interpretation for the holomorphic curves.

Algebraic curves in $T\mathbb{RP}^1$ and filaments in $\mathbb{R}^{1,2}$

$$0 = \sum_{r,s} z^r w^s \qquad \text{Expand near } (w_0, z_0) \Longrightarrow$$

$$w = w_0 + a_1(z - z_0) + a_2(z - z_0)^2 + O(z - z_0)^3$$

We approximate the algebraic curve locally by parabolas. Each parabola corresponds to an MHV curve.

Each parabola therefore corresponds to a point \vec{x} $(\vec{x}', \vec{x}'', \dots)$ in physical space $\mathbb{R}^{1,2}$. The collection of the points $\vec{x}, \vec{x}', \vec{x}'', \dots$ forms a filament \mathcal{F} .

The filament is a null worldline in $\mathbb{R}^{1,2}$!

The outgoing waves of the scattering process can now be described as a physical disturbance that is emanating from the filament \mathcal{F} .

Twisted Dimensional Reduction

We can get D=3 mass terms by gauging a linear combination of translation and SU(4) R-symmetry:

$$P_4 - M^A{}_B R_A{}^B = 0.$$

 $R_A{}^B$ is the R-symmetry charge. E.g.,

$$[R_A{}^B, \psi^C] = \delta_A^C \psi^B.$$

For example, Dirac's equation becomes

$$0 = \sum_{\mu=1}^{4} \Gamma^{\mu} \partial_{\mu} \psi^{A} = \sum_{i=1}^{3} \Gamma^{i} \partial_{i} \psi^{A} + i \underline{M}^{A}{}_{B} \psi^{B}.$$

There is also a mass term for the scalars

$$0 = \partial_i \phi^{[AB]} \partial^i \phi_{[AB]} + M^A{}_C M^B{}_D \phi_{[AB]} \phi^{[CD]},$$

where

$$\phi_{AB} \equiv \frac{1}{2} \epsilon_{ABCD} \phi^{CD}$$

Repeating the steps as before, we get instead of minitwistor superspace . . .

D = 3 Massive Super-mini-twistor space

Repeating the steps as before, we get the supermini-twistor target space for the massive D=3 SYM in the form

$$Z' = \frac{1}{Z}, \qquad W' = \frac{W}{Z}, \qquad \Theta' = \frac{1}{Z} \exp\left(\frac{W}{Z}M\right) \Theta$$

The four anticommuting Θ^A directions are fibered in a nontrivial way over the W-plane.

How is this related to direct dimensional reduction of the mass term deformation

$$\Theta'^{A} = \frac{1}{Z}\Theta^{A} + \frac{1}{6Z^{2}}M^{AB}\epsilon_{BCDE}\Theta^{C}\Theta^{D}\Theta^{E}$$

that we found previously?

D = 3 Infinitesimal Mass Terms

For infinitesimal mass terms in D=3 we get the following complex structure deformations

$$\begin{split} & \delta M^{A}{}_{B} \sigma^{4}_{\alpha \dot{\alpha}} \psi^{\dot{\alpha}}_{A} \psi^{B\alpha} \Longrightarrow \delta \Theta'^{A} = \delta M^{A}{}_{B} \frac{W}{Z^{2}} \Theta^{B}, \\ & \delta M^{AB} \psi^{\dot{\alpha}}_{A} \psi_{B \dot{\alpha}} \Longrightarrow \delta \Theta'^{A} = \delta M^{AB} \frac{1}{6Z^{2}} \epsilon_{BCDE} \Theta^{C} \Theta^{D} \Theta^{E} \end{split}$$

The vector fields on the RHS are the only translationally invariant (in cohomology) $\delta \Theta'$ deformations (unless we allow anticommuting parameters).

The translation generators act as

$$P_{1} = iZ \frac{\partial}{\partial W},$$

$$P_{+} := P_{2} + iP_{3} = -i \frac{\partial}{\partial W},$$

$$P_{-} := P_{2} - iP_{3} = iZ^{2} \frac{\partial}{\partial W}.$$

R-symmetry [Spin(7) in D=3] should transform one mass term to the other. How does Spin(7) act?

Summary

• In D=3 we found that

$$Z' = \frac{1}{Z}, \qquad W' = \frac{W}{Z}, \qquad \Theta' = \frac{1}{Z} \exp\left(\frac{W}{Z}M\right) \Theta$$

corresponds to a mass term.

• In D = 4 we found that

$$\Theta'^{A} = \frac{1}{Z}\Theta^{A} + \frac{1}{6Z^{2}}M^{AB}\epsilon_{BCDE}\Theta^{C}\Theta^{D}\Theta^{E}$$

corresponds to a chiral mass term.

 In D = 3 holomorphic curves in twistor space correspond to filaments in spacetime from which the scattered wave-functions originate.

Open issues

- D = 3 at 1-loop?
- The limit $M \to \infty$?
- The Spin(7) R-symmetry . . .
- Mirror symmetry . . .